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Global Redundancy Resolution via Continuous
Pseudoinversion of the Forward Kinematic Map

Kris Hauser, Member, IEEE, and Scott Emmons

Abstract—This paper presents a novel approach to kinematic
redundancy resolution for redundant robots, which have more
degrees of freedom than workspace dimensions. It introduces
the concept of a global redundancy resolution, which has the
convenient property that whenever the robot returns to the
same workspace point, it uses the same joint-space pose. The
problem is cast as a continuous pseudoinversion of the forward
kinematic map. Continuity and smoothness should be attained if
possible, but otherwise the volume of the discontinuity boundary
should be minimized. A sampling-based approximation technique
is presented that constructs roadmaps of both the domain and
image, and minimizes discontinuities of the inverse function using
a MAX-SAT constraint satisfaction problem. Applications of this
map include teleoperation, dimensionality reduction in motion
planning, and workspace visualization. Results are demonstrated
on toy problems with up to 20 DOF, and on several robot arms.

Note to Practitioners: Abstract—Determining whether a robot
manipulator can cover a range of movement in a Cartesian
workspace under joint limits and collision constraints is typically
addressed by an engineer’s intuition and trial-and-error. This
paper presents an algorithm to solve this problem systematically.
The method optimizes a mapping from workspace to joint space
to minimize the number of discontinuities. The resulting maps
can be used to select continuous inverse kinematic solutions
to follow workspace paths, and their visualizations can aid in
workcell design, robot selection, and robot placement.

Primary and Secondary Keywords Index Terms—Primary
Topics: Robot kinematics, Inverse problems. Secondary Topic
Keywords: Manufacturing automation, Topology.

I. INTRODUCTION

EDUNDANCY resolution is the problem of determining

joint-space motions that achieve workspace (Cartesian)
motions for robots that have more degrees of freedom than the
workspace. Pointwise methods determine inverse kinematics
(IK) solutions using only local knowledge of the workspace
motion, and suffer from the problem that the robot may get
stuck at joint limits or at self collision [6]. Pathwise redun-
dancy resolution seeks to generate a continuous configuration-
space path for a given workspace path. This has the potential
disadvantage of being unpredictable, in that the success of
resolution may depend on the initial configuration, and a
closed workspace cycle may not return the robot to the same
configuration [13]. This paper formulates the notion of a
global redundancy resolution, which has the property that
every workspace cycle causes the robot to return to the same
configuration. This may be a useful property to make robots

K. Hauser is with the Department of Electrical and Computer Engineering
and Department of Mechanical Engineering and Materials Science, Duke
University, Durham, NC, 27708 USA e-mail: kris.hauser@duke.edu.

S. Emmons is with University of North Carolina at Chapel Hill and Duke
University e-mail: scott.emmons@duke.edu

Pointwise Pathwise
Non-global

Fig. 1. Illustrating three types of redundancy resolution. Pointwise resolution
gives a solution for each point, but does not guarantee continuity along a
path. Pathwise resolution gives a continuous solution along a workspace path,
but is non-global: the robot may return to the starting point with a different
configuration, and some paths may not have a valid resolution from a given
starting configuration. Global resolution gives a continuous solution such that
every cyclic path returns to the same configuration.

behave more predictably during Cartesian movement than
either pathwise or pointwise resolution (Fig. 1).

The global redundancy resolution problem may be gen-
eralized to one of continuous multivariate pseudoinversion.
Function inversion is frequently encountered in many fields
of science and engineering, including robotics, computer
graphics, control, and mechanical design. Pointwise inversion
techniques, like IK, seek a point  such that f(z) = y for a
given y. In contrast, this paper is interested in generating a
functional map of the inverse across entire regions of space,
i.e., find a function f~!(y) such that f(f~'(y)) = y across
all y. This is often an underconstrained problem, because the
preimage of a point in the range may contain multiple or an
infinite number of points in the domain and some inverses may
be wildly varying or highly discontinuous. This paper seeks an
algorithm to obtain maximally continuous and smooth inverse
functions in high-dimensional spaces.

For example, consider the IK problem for a 2R planar robot
manipulator restricted by joint limits (Fig. 2). Here the forward
kinematics map f maps joint angles to Cartesian end effector
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Fig. 2. A planar 2R manipulator with joint limits of £45° and £90°,
respectively. There are no joint space resolutions of Cartesian end effector
paths (e.g., the dotted curve) in the interior of the reachable workspace from
the upper region to the lower region.

(workspace) points. Points in the CCW extremes of the work-
space are reachable only with “elbow-down” configurations,
while points in CW extremes are reachable only with “elbow-
up” configurations. In between, both elbow-down and elbow-
up configurations are valid. Observe that any workspace path
from the CCW extreme to the CW extreme must cause the
robot to at some point flip between elbow down and elbow up.
In fact, there is no continuous solution for such a workspace
path unless it touches the workspace boundary, causing the
robot to pass through a singularity.

If this robot were to be changed to a kR manipulator with
k > 3 (i.e., a redundant manipulator), would a continuous
inverse function exist? In contrast to the 2R case, there are
a continuous infinity of inverses at each point, and it may
seem as though this leaves sufficient flexibility to choose
an everwhere-continuous inverse map. Hence, it is perhaps
surprising that this is not the case, and in fact no solution
exists for many settings of joint limits and link lengths.

We present an approximate global redundancy resolution
algorithm that generates a roadmap of sampled points in the
workspace and associates each point with a set of configuration
samples in its preimage. A configuration space roadmap is then
generated along these samples, and a constraint satisfaction
optimization (MAX-CSP) is applied to generate a pseudo-
inverse map that minimizes the number of discontinuous
edges. The algorithm is applied to kinematic models of the
Rethink Robotics Baxter, Boston Dynamics ATLAS, Kinova
Jaco, NASA’s Robonaut2, and JPL’s Robosimian, showing that
some robots are nearly globally-resolvable and others are not.
Moreover, it calculates rich workspace maps that help visualize
the boundaries of discontinuity in the optimized redundancy
resolution.

II. RELATED WORK

Redunancy resolution has been studied extensively, with
many pointwise heuristics proposed to avoid singularities,
joint limits, and obstacles [9], [12]. Several researchers have
identified the problem of local minima of pointwise resolution
methods, leading to pathwise resolution techniques [5], [9],
[11], [13], [14], [16]. The pathwise algorithm we present in
Sec. IV-A is most closely related to the work of [14], who use
a randomized tree-growing approach to explore self-motion

manifolds along a discretized workspace path. Recently, a
sampling-based pathwise redundancy planner was developed
that enforces joint space paths to be cyclic [13]

A related problem is that of path planning for closed-chain
mechanisms. One class of planners analyzes the shape and
connectivity of the closed-chain configuration space (C-space)
manifold, with exact planners developed for robots with spher-
ical joints [23] and planar star-shaped robots [17]. Although
such algorithms provide global and exact connectivity of the
manifold, they are limited to restrictive problem classes and
have not been extended to handle joint limit and collision
constraints in 3D. To address these shortcomings, sampling-
based motion planners [1], [4], [7], [19] have been applied
to this problem as well. These planners construct roadmaps
whose nodes are collision-free configurations sampled at ran-
dom, and edges are collision-free paths between them. To
sample closed-chain configurations, open-chain configurations
are first sampled at random, and then loop-closure constraints
are enforced. Local paths are checked by interpolating along
the constraint manifold using local optimization.

Unlike planning a path, which is a 1-dimensional map to
configuration space, the global redundancy resolution problem
is concerned with computing an m-dimensional map to con-
figuration space. The closest related works in global resolution
are [2], [10]. The method of [10] constructs a topological
network of connected components of self-motion manifolds
across a discretization of the workspace, and was applied to
planar problems. However it is difficult to analyze connected
components for arbitrary robots with constraints. The method
of [2] generates IK tables via local optimization and selection
of similar IK solutions to yield a smooth mapping for each
leg of the Robosimian robot. These tables were then used to
simplify motion planning for legged locomotion trajectories
in [15]. We use a similar optimization method, although in
this case, using coordinate descent, to smooth our maps in
postprocessing as described in Sec. IV-D.

Global redundancy resolution has several potential appli-
cations. They could be used to select positions for a mobile
base for a robot to perform certain Cartesian movements [24].
Qualitatively, we observe these discontinuities correspond to
workspace regions that are frustrating for teleoperation [6].
Finally, these mappings may also be useful for reduced-
dimensionality motion planning in Cartesian space [15].

This paper is an extended version of a conference
manuscript [8]. This version describes related work and the
algorithm in greater detail; presents an enhanced visualization
technique; and presents new work in scaling to 6D workspaces.
New experiments are conducted to illustrate the potential for
applying the technique to workspace design problems on the
Baxter robot and a model of the Staubli TX90L industrial
manipulator.

III. PROBLEM DEFINITION

We wish to compute a continuous pseudoinverse of a robot’s
forward kinematics map f : C — W. Here, C is a configuration
space (C-space) consisting of the robot’s degrees of freedom.
W is the Cartesian workspace, which typically contains either
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position or orientation of the robot’s end effector, or both. In
redundant problems, we have dim(C) > dim(W). We will use
q to denote configurations and y to denote workspace points.
Define the free space & C C as the subset of configurations
that lie within joint bounds and are collision-free. Define the
reachable workspace W¢ C W as the subset reachable by free
space configurations We = f[F].

Function pseudoinverse. A pseudoinverse of a surjective
function f : A — B is an injective function f¥ : f[A] — A
such that each element of the image f[A] is mapped to an
element in its preimage, i.e., f(fT(y)) =y for all y € f[A].

A pseudoinverse always exists even though an inverse may
not, and if f is a bijection, then the pseudoinverse is identically
the inverse. We also note that when A is of higher dimension
than B, the preimage of each element in f[A] is, in general,
an infinite set, and hence the number of pseudoinverses is
infinite. Although it may be easy to compute a pseudoinverse
pointwise, e.g., by Newton’s method, pointwise pseudoinverses
often do not satisfy desirable properties, such as continuity or
smoothness.

Continuous pseudoinverse. A continuous pseudoinverse
fT is a pseudoinverse that is continuous in the parameters
y across all of f[A].

Pointwise redundancy resolution. A function f* is a
pointwise resolution if it is a pseudoinverse of f over We.

Pathwise redundancy resolution. A function f* is a
pathwise resolution over the workspace path y : [0,1] — We
if it is a continuous pseudoinverse over the path. In other
words, £(f+(y(t)) = y(t) and lim, ¢ F*(y(w) = f*(y(t))
for all ¢t € [0,1]. In this case we call g(t) = f*(y(t)) the
resolved path. We also speak of endpoint constrained pathwise
resolution where boundary conditions g¢o = f*(y(0)) and/or
q1 = [T (y(1)) exist at one or both of the endpoints.

Global redundancy resolution. A function f* is a global
resolution if it is a continuous pseudoinverse of f over W¢.

We will say that a problem is (pointwise, pathwise, or glob-
ally) resolvable if a (pointwise, pathwise, or global) resolution
exists. It is straightforward to observe that global resolvability
= pathwise resolvability = pointwise resolvability. As
discussed in the introduction, the converse does not necessarily
hold true.

IV. APPROXIMATE GLOBAL REDUNDANCY RESOLUTION

A global redundancy resolution must, essentially, resolve all
workspace paths simultaneously. Our approximation assumes
the workspace is discretized into a network of workspace
paths, and resolves all paths simultaneously across the net-
work. We first describe a probabilistically-complete sampling-
based algorithm to solve the simpler problem of pathwise re-
dundancy resolution, illustrated in Fig. 3. For global resolution,
we also build C-space roadmaps, except the roadmap is built
along all workspace paths, and rather than finding one path we
seek a connected “sheet” that spans the workspace dimensions.

A. Pathwise Redundancy Resolution

Consider a parameterized, continuous workspace path. At
any workspace point, the kinematic constraint limits the set of

A

Fig. 3. Top: Illustrating the pathwise redundancy resolution problem. Bottom:
a probabilistically complete roadmap-based solution.

valid points to a submanifold of C-space known as the self-
motion manifold, and boundaries are introduced to the man-
ifold due to feasibility constraints (e.g., joint limits). Hence,
as the path parameter sweeps from 0 to 1, the self-motion
manifolds sweeps out a manifold of one higher dimension in
the Cartesian product [0, 1] xC. The goal is to find a path along
this manifold with a monotonically increasing path parameter.
First, let us define a few commonly used subroutines.

o Solve(y, ginit) solves a root-finding problem f(q) = y
numerically using ¢;,;+ as the initial point. If it fails, it
returns nil. It is assumed that the result ¢ lies close to
Qinit-

o SampleF(y) first samples a random configuration ¢;qnq €
C and then uses Solve(y, ¢rand). If the result is nil or
infeasible, then nil is returned.

o Visible(y, ts, ty,qs,q4) is an incomplete, deterministic
method for local path resolution of a path y(¢) over
the interval [t,,t,]. We require that f(¢s) = y(ts) and
f(gg) = y(tg) be given as the endpoints of the interval.
Pseudocode for Visible is given in Alg. 1, and is similar
to the method of [22] except with collision handling.

Here 0.5 < ¢ < 1 is a parameter that controls the maximum
amount of drift away from a straight line path. Without Line
5, the bisected path could grow without bound. Usually c is
set close to 1. Examples in this paper use 0.9.

Using these primitives, we present a probabilistically com-
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Algorithm 1 Visible(y, ts,t4, s, qq)

Algorithm 3 Pointwise-Global-Resolution(Gy, Ny)

1: if d(gs, q4) < € then return “true”

2: Let ypm <= y((ts +t4)/2) and ¢,

3: Let g < Solve(ym, ¢m)

4: if ¢ = nil or ¢ ¢ F then return “false”

5. if max(d(q,qs),d(q,q4)) > c -
“false”

6: if Visible(y,ts,tm, ¢s, gm) and Visible(y, t,,, tg, Gm, qq)
then return “true”

7: return “false”

(gs +4a9)/2

d(gs,q,) then return

Algorithm 2 PRM-Path-Resolution(y, N)
1: Initialize empty roadmap R = (V, E)
2: if ¢(0) and ¢(1) are given then
3 Add (0,¢(0)) and (1,¢(1)) to V
4: else
5: Sample O(N) start configs using SampleF(y(0))
6
7
8
9

Sample O(N) goal configs using SampleF(y(1))
:fori=1,...,N do
Sample tsample ~ U([O7 1])
: Sample gsampie <*Sarnplel:;(y(tsmmple)
10: if Geample 7 7l then add (tsampie, q) to V

11: for nearby pairs of vertices (ty,, qu), (ty, ¢») With ¢, < ¢,
do

12: if Visible(y, ty, ty, Gu, ¢») then

13: Add the (directed) edge to E/

14: Search R for a path from ¢t =0tot =1

plete path resolution method using a slightly modified proba-
bilistic roadmap (PRM) algorithm. Here, the PRM is built in
the space [0, 1] x F of time-configuration pairs (¢, ¢), subject to
the manifold constraint f(q) = y(t). The two necessary mod-
ifications to PRM are 1) maintaining the manifold constraint,
and 2) restricting forward progress along the time domain by
constructing a directed graph. Pseudocode is given in Alg. 2.

B. Workspace and C-Space Roadmaps

The first step in our global redundancy resolution technique
is to define a workspace roadmap Gw = (Viy, Ew ). This can
be generated either in the form of a grid or a probabilistic
roadmap. It is assumed the nodes in Vy are sufficiently
dense to interpolate behavior across the entire workspace via
standard function approximation techniques (Sec. IV-F). The
solution we seek is a mapping from the vertices to C-space
g : Viy — F such that for any two adjacent workspace points
(y,y') € Eyw, the straight line path yy’ is locally pathwise
resolvable between g[y] and g[y']. For notational convenience,
let the local reachability indicator function R(y,y’,q,q’) be 1
if Visible(yy’,0,1,q,¢’) yields “success” and 0 otherwise.

In the case that g is not a resolution, we propose the
following primary cost function that measures the number of
unresolved edges:

Ug)= Y. (1-Ryv.glloly]) O

(y.y")€EEW

1: Initialize empty roadmap R¢ =
2: for each y € Viy do
3: Let Qgeeq UwGN(y)Q[w]

(Ve, Ec)

4: for each ¢, € Qseeq do

5: Run ¢ < Solve(y, gs)

6: if ¢ # nil then

7: Add ¢ to V¢ and return to Step 2

8: Run SampleF(y) up to N, times

9: If any sample q succeeds, add it to V¢

10: for all edges (y,y’) € Ew such that |Q(y)] > 0 and

1Q(y')[ > 0 do
11: Let ¢ be the only member of Q(y)
12: Let ¢’ the only member of Q(y’)
13: if R(y,vy’,q,¢’)=1 then

14: Add (q,q’) to B¢
return R¢

If the problem is not resolvable, we wish to find a g that
minimizes U(g). It may also be possible to weight edges by
their importance to the task, such as by assigning higher cost
to regions of interest in the workspace.

Note that for a globally resolvable problem, there are also an
infinite number of pseudoinverses, some of which are smoother
than others. It is then a desirable secondary objective to
maximize smoothness in the redundant dimensions. Distance
is a good proxy for smoothness, so for a secondary cost we
measure total C-space path length:

Lig)= Y d(glyl,gly) R,y gyl gly]). (2
(y,v")€Ew
Our algorithms will generate a configuration roadmap
Rec = (Ve, Ec) whose vertices and edges map (surjectively)
to corresponding vertices and edges of Gyy. The connection
is given by Y[q], which maps C-space vertices to associated
workspace vertices, and its inverse Q[y], which map work-
space vertices to a set (possibly empty) of associated C-space
vertices. Given Y, we define:

Ec={(¢,¢') | (Y[g,Y[d]) € Ew and
R(Y[q),Y[q],q,q') = 1}.

Each algorithm has a different method of sampling R and
selecting the elements of the map g[y] € Qly].

3)

C. Pointwise global resolution

For comparison, we describe a fast and simple pointwise
method that locally propagates pointwise solutions across the
workspace roadmap. Here each set Q[y] contains at most 1
configuration, and hence the extraction of g is straightforward.
Pseudocode is given in Alg. 3.

Here N(y) is the neighborhood of a vertex y in the work-
space graph. Note that the bookkeeping associated with main-
taining the associations in Y and @ is fairly straightforward,
but since it is rather tedious to write it will be left implicit
in the remainder of the pseudocode. Specifically, in Lines 7
and 9, we implicitly assume that the maps Y and @) will be

updated appropriately: Y[q] < y and Q[y] < Q[y] U {¢}.
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Fig. 4. Tllustrating global resolution on a small problem. Each point on a
workspace roadmap (3x3 grid on horizontal plane) corresponds to a certain
self-motion manifold (vertical dashed lines). Feasible configuration space
samples (circles) are sampled in each manifold, and edges are tested for
feasibility along all workspace edges. Global resolution seeks to select a single
configuration for each workspace point to form a maximally connected “sheet”
in the configuration space roadmap.

D. Constraint satisfaction-based resolution

The pointwise method often leaves many edges unnec-
essarily unresolved. To improve performance, the following
algorithm samples many configurations in the preimage of
each workspace point, connects them with feasible edges, and
seeks a “sheet” in the C-space roadmap (Fig. 4). In order to
perform this latter step, redundancy resolution is cast as a
constraint satisfaction problem (CSP).

The algorithm proceeds by sampling many configurations
per workspace point and adding them to Qy]. Each pair
of configurations along workspace edge is then tested for
visibility and added to E¢. This leads to the formulation of
a MAX-CSP in which a value g[y] € Q[y] is sought for each
workspace point, such that for all neighboring points 3/, the
C-space edge is visible, that is, (g[y],g[y']) € Ec. If there
is no such resolution, then MAX-CSP seeks an assignment g
that minimizes the number of conflicts U (g). We also maintain
L(g) as a secondary optimization criterion.

Since we typically have thousands of workspace points and
often dozens or hundreds of configurations in each point’s
domain, backtracking CSP methods are usually prohibitively
expensive, especially when the problem is not resolvable.
For example, the open source Gecode library exhausted our
machine’s RAM before finding even a suboptimal solution
on the smallest problems in our experiments [20]. The Sugar
algorithm, which converts CSPs to boolean satisfaction (SAT)
problems, produced intermediate SAT problems exceeding the
limit of 4 Gb on even smaller problems with 500 workspace
nodes [21]. As a result we employ a heuristic local search
method. The algorithm proceeds in three phases.

Heuristic descent. Our search phase proceeds down a single
path of a backtracking search in the dual graph CSP, and
stops when no more workspace edges can be assigned. In
this formulation, the edges (y,y’) are the variables, values
are the g[y], g[y’] pairs at their endpoints, and the domains
are the set of all edges (g,q’) € E¢ such that Y[¢] = y and
Y[q'] = y'. Pairs of edges that meet at the same workspace
point are constrained so a configuration at one endpoint must

Algorithm 4 CSP-Global-Resolution(Gyw, Ny, Ny, Nopt)

1: Initialize R < Pointwise-Global-Resolution(Gyy, Ny)
2: for each y € Viy do

3: Run SampleF(y) N, times.

4

5

Add all samples that succeed to V.
: for all edges (y,y') € Ew such that |Q(y)| > 0 and

|Q(y")| > 0 do
6:  forall (¢,¢') € Q(y) x Q(y') do
7: if R(y,v’,q,¢') = 1 then
8: Add (¢q,q¢") to Ec
9: g « HeuristicDescentCSP(R¢)
: g + MinConflictsCSP(R¢, g, Nine)
11: CoordinateDescent(R¢, g, Nopt)
: return g

—
=]

—_
N

match the value of the adjacent edge. The advantage of this
formulation is that maximizing the number of values assigned
leads to a direct minimization of U(q). Forward checking and
domain consistency are used for constraint propagation, and
variable ordering heuristics of most constrained variable and
most constraining variable are applied. Value selection is done
using the least-constraining value heuristic. Ties are broken
randomly. No backtracking is performed, and as many non-
conflicting variables are assigned as possible.

Min-conflicts. The second phase does a more straightfor-
ward min-conflicts operation, this time on the primal graph
where variables are nodes, values are assigned configurations
gly], and domains are sampled configurations Q[y]. Here, the
algorithm iterates from the assignment produced by heuristic
descent by choosing a conflicting variable at random, if one
exists. If none exists, then we are done. The value in its domain
that minimizes conflicts with its neighbors is then selected.
This process repeats some number of iterations.

Length optimization via coordinate descent. After con-
flicts are minimized, the final phase attempts to optimize
L(g) while keeping U (g) constant. Coordinate descent is used
as follows. For each C-space node g[y], we compute the
average configuration ¢, of its neighbors in Rc amongst
those whose endpoints match in g. It is then used as a target
for optimization min, d(g, gavg), under the constraint that
f(g) = y must be satisfied and that reachability of ¢ from
all neighbors is satisfied. To do this, we use bisection. First,
q + Solve(y, gavg) is calculated. If ¢ is not reachable from
its neighbors, then ¢q.4 is set to the midpoint of the line
segment from g[y] to guy4. Solving and bisection repeats until
a reachable configuration is found.

The overall algorithm is listed in Alg. 4. Experiments
suggest that all three of these phases cooperate to produce
high-quality results. Skipping the heuristic descent step leads
to poor performance for more complex problems, because
pointwise assignment leaves the solution in a deep local
minimum. Skipping min-conflicts fails to clean up some errors
in heuristic descent, and skipping length optimization leads to
maps that are much less smooth.

The parameter values are as follows:

e Ng: the number of C-space samples drawn per workspace
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node. More samples are typically needed for highly
redundant systems. We use 50—100 in our experiments.

e N,,.: the number of min-conflicts iterations. A small
number of passes, such as 10x the number of conflicts,
usually works well.

e N,y the number of coordinate descent iterations. We
have observed most problems converging to less than
0.1% change in objective function value in about 20
iterations.

E. Performance considerations

In our experiments, the algorithms above range in compu-
tation time from minutes to hours for thousands of workspace
points. The limiting step is C-space roadmap construction
(Steps 2-7), and visibility checking in particular (Step 6),
which is significantly more expensive than any other primitive
operation.

Scalability-wise, the pointwise assignment algorithm per-
forms O(N,|Viy|) C-space samples (although in prac-
tice this is closer to O(|Viy])), and O(|Ew|) visibility
checks. The CSP algorithm performs O(Ny|Viv|) configu-
ration samples and O(NZ|Ew|) visibility checks in Lines
2-8. With efficient implementation of CSP updates and
a priority queue for sorting edges, heuristic descent runs
in time O(dw N7|Ew|log|Ew/|), where dy is the degree
of Gyy. The min-conflicts operation finds initial conflicts
in O(dwNZ|Vi|) and each of the N, iterations takes
O(dwN7) time. Finally, optimization takes O(Nop¢|Viv|)
optimization steps and O(N,y|Ew|) visibility checks.

The other question is whether the algorithm produces an
optimal or near-optimal resolution. There are two factors
influencing this: whether the C-space roadmap contains a
solution, and whether the constraint satisfaction solver finds
it. For problems with narrow passages in free space, finer
workspace and configuration roadmaps are needed to resolve
them. As a result, it is expected that as |Gy | and N, grows, the
probability that R contains a resolution will grow towards 1.
In practice, it is often effective to employ a second sampling
pass at the vertices of unresolved edges. As for the CSP
solver, even though the algorithm performs well in practice, it
is indeed a heuristic. Producing an efficient, optimal method
seems challenging in light of the NP-hardness of CSPs and
the poor performance of existing state-of-the-art backtracking
solvers.

FE. Interpolation between sample points

Once a resolution g[y] over the workspace roadmap Gy
is produced, we extend it to the continuous workspace Wg
via function approximation. In particular, we yield f*(y) =
Solve(ginterp(y), y) Where ginterp(y) is a weighted combina-
tion of resolved configurations at workspace points

Ginterp(y) = Z wi(y)ei(y)glyil/ Z w;i(y)ej(y) @)

and the sums are taken over indices of workspace points
y; € V. The terms w; are distance-based weights that
decrease as y grows more distant from y;, while the c;

terms are indicator functions that prevent interpolation across
discontinuity boundaries in the resolution. For a regular grid,
barycentric coordinates in the simplex are used as weights. If
Gy is a probabilistic roadmap it is possible to use scattered
data interpolation techniques.

The term c¢; is 1 if the neighborhood of y is globally
resolved, but if there is a discontinuity, it is used only to
average points on one side of the boundary. To compute it, we
take the subgraph of the C-space roadmap R¢ corresponding
to the resolved points g[y;] for all workspace points y; with
nonzero weights. We then compute connected components
of this subgraph, and for all nodes in the largest connected
component ¢; is set to 1. It is set to O for all other nodes.

G. Computing the Discontinuity Boundary

A representation of the optimized discontinuity boundary
is useful to retrieve for visualization and planning. In a d-
dimensional workspace, the boundary is a d — 1-dimensional
non-manifold surface. We represent it as a a mesh of line
segments / triangles in 2D / 3D spaces, respectively. Let Ep C
Eyw denote the set of conflicting workspace edges that have
feasible assigned configurations at each endpoint, but do not
have a feasible assigned configuration-space path. To visualize
the boundary of the reachable workspace we can also include
edges from reachable vertices to unreachable ones in Fp. We
compute a mesh that intersects all edges in E'p and no edge
in EW \ E D-

To do so we first compute an edge-conforming simplicial
decomposition of Gy. Then, for each simplex s in the
decomposition and conflicting edge e on the simplex boundary,
we construct a small portion of the boundary connecting e to
the centroid s. Let C' be the centroid and V' be the midpoint
of e. For 2D workspaces, we simply construct a line segment
VC. For 3D workspaces, we construct two triangles, VCC’
and VC'C"” where C’ and C" are the centroids of the simplices
adjoining s.

We then proceed to simplify the mesh to yield less jagged
boundaries when multiple conflict edges are adjacent. The
vertices of the mesh that correspond to simplex centroids
or face boundaries are candidates for collapsing. In 2D, if
a centroid is connected to two adjacent conflict edges, it is
collapsed to one of the edges. In 3D, if a centroid connects
to three edges, all of its incident triangles are collapsed to a
single face. If it connects two that border a single face, the
centroid is collapsed to a neighboring centroid.

Finally, the boundary mesh is smoothed to minimize cur-
vature, constrained so that each vertex along an edge stays
on the edge and is reachable from both endpoints of the
edge, if possible. To do so, for each edge P7Q € Ep we
compute the maximum interpolation parameter b such that
(1 —b)P + bQ is reachable with a continuous motion from
P. We also compute the minimum parameter a such that
(1 — a)P + aQ is reachable from . Then the parameter
defining the mesh vertex V' on e is constrained to the range
[a,b]. If a > b, then V = (1 —u)P+u( is set to the midpoint
of the discontinuity with u = (a 4+ 0)/2.
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TABLE I
SUMMARY OF EXPERIMENTS IN SECTION V.

Robot dim(C) dim(¥W) Grid points % disconnected Distance ratio (rad/m)
Planar 3R 3 2 1,985 1.42 0.28
Planar 20R 20 2 1,985 0.96 0.21
Jaco 6 3 7,471 0.062 3.81
ATLAS 7 3 8,778 1.61 3.03
Baxter 7 3 7,471 3.92 1.95
Robonaut2 6 3 8,778 4.50 3.12
Robosimian 7 3 5,029 13.9 2.92

Fig. 5. Left: Staggered grid network used to discretize 2D workspaces. Right:
staggered grid unit used in 3D.

Fig. 6. Pseudoinverse discontinuity boundaries for a planar 3R arm. Left:
pointwise resolution. Right: the optimized solution has fewer spurious dis-
continuities.

V. RESULTS

In all of the experiments in this section, the workspace
consists of the Cartesian coordinates of a point on the robot’s
end effector in 2- or 3-dimensional space. Staggered work-
space grids are used (Fig. 5). A summary of these tests is
given in Tab. I. The final two columns give the percentage
of disconnected workspace graph edges (% disconnected) and
the overall ratio of configuration space distance to workspace
distance summed along all edges on the roadmap (Distance
ratio). Low numbers are preferred to ensure a robot can
be operated in Cartesian mode with minimal obstructions.
However, it must be noted that these numbers assume uniform
utility at all points in the workspace. To assess whether a robot
is suitable for a given task, it is usually more informative to
examine the discontinuity boundary visually as shown in the
figures below, or to define custom workspace regions as we
do in Sec. VL

The first set of experiments are performed on planar kR
robots. Fig. 6, left, shows the pointwise assignment boundaries

o~

Fig. 7.
solution.

A planar 20R arm. Left: pointwise resolution. Right: optimized

for a 3R robot with joint limits of +2rad and a workspace
grid of 2,000 points. In this case, pointwise assignment works
fairly well. Our method (Fig. 6, right) only reduces the number
of disconnections by 24%, but reduces the total C-space path
length by about 60%.

Results for a 20R robot with joint limits of +0.6rad are
shown in Fig. 7. In this case, the pointwise assignment causes
a wide swath of disconnections in the upper part of the
workspace (3.69% of reachable edges). Using the CSP method,
the number of disconnections are greatly reduced (0.96% of
reachable edges) and the total path length is reduced by 38%.

The next set of experiments apply to robot arms with 6
or more DOFs in 3D Cartesian space, including the Kinova
Jaco (Fig. 8), single arms of the Boston Dynamics ATLAS
(Fig. 9), the Rethink Robotics Baxter (Fig. 10), the NASA
Robonaut2 (Fig. 11), and a limb of the JPL Robosimian
(Fig. 12). The kinematic structure and limits of each robot
differs: the Jaco has three continuous rotation joints, and
the ATLAS, Baxter, and Robonaut2 have an anthropomorphic
elbow and 3-axis shoulder, but with different axes and joint
limits. In the Robosimian limb, each pair of 2 joints have
intersecting axes, and each joint can rotate 360°. Arbitrary
orientation of the end effector is permitted, and configurations
are required to obey joint limits and avoid self-collision.

Pointwise assignment does badly in 3D, as illustrated on
the Jaco (Fig. 8.a). The purple region illustrates the surface of
disconnections. A huge number of disconnections are caused
by pointwise resolution. After CSP resolution (Fig. 8.b), the
number of disconnections drops to a minimal number (0.062%
of reachable edges). A rationale for this favorable result is
that the Jaco’ continuous rotation joints gives it significant
flexibility to reorient its configuration across its workspace.

ATLAS has a discontinuous region near a singularity at the
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(a) (b)

Fig. 8. Results for the Jaco arm. (a) After pointwise resolution, the disconti-
nuity boundary divides up nearly the entire workspace. (b) The optimized
solution is resolved almost everywhere. For clarity, the outer workspace
boundary is not drawn in any 3D figures except when noted. Boundaries
are color-coded and shaded by directional light. (Best viewed in color)

Fig. 9. Optimized results for the arm of the ATLAS humanoid. Two views
of the discontinuity boundary are shown.

shoulder, as well as over the head where the upper arm comes
close to colliding with the head. Baxter has a much larger
discontinuous region above the shoulder, likely because the
arm naturally bends downward, and it approaches joint limits
as the arm bends upward. Hence, to pass from front to back in
that upward region, the hand must pass down and around. It
also has discontinuities the opposite side of the torso near the
rear, where the arm can reach points either around the front
or around the back of the torso. Robonaut2 has essentially the
opposite problem, with discontinuities along the underside of
the arm. Joint limits in the shoulder mean that its hand must
move up and around to pass from elbow-back to elbow-front
configurations. Other small discontinuities are scattered about
the torso, which are likely free space narrow passages caused
by self-collision. Perhaps a denser sampling of configurations
or workspace would help reduce these artifacts.

Robosimian is an interesting case. Although its joints have
a larger range of motion than each of the four other robots,
its kinematics are quite different. Its workspace is quite large,
as each limb can reach completely around the body in all
directions. Unlike the manipulator arms, it is unable to rotate
a “shoulder” about an arbitrary axis, and hence it needs to

Fig. 10. Optimized results for the left arm of the Baxter robot, with free
rotation. Two views of the discontinuity boundary are shown.

Fig. 11. Optimized results for the arm of the Robonaut2. Two views of the
discontinuity boundary are shown.

perform rather large joint space motions to reconfigure itself to
move the end effector when close to singularities. Also, when
close to self-collision, many end effector movements are likely
to cause links near the body to come into collision. Most of the
optimized discontinuities lie close to edge of the workspace
or near the robot’s body, and a large cavity of resolved space
lies below the robot. When rotation is constrained to point
downward, as when walking on flat ground, the reachable
space is more limited.

VI. APPLICATION TO ROBOT WORKSPACE DESIGN

The presented technique can be used for task-driven work-
space design, in which we ask questions such as “which robot
would be able to move workpieces from area X to area Y,
where should workpieces be placed so a robot can reach them,
and in which orientation should an end effector be mounted?”
Using this algorithm as a design tool, multiple designs can be
compared visually by placing the discontinuity boundary in
a given workcell, or quantitatively by calculating the fraction
of Cartesian space disconnected by the resolution. It is trivial
to incorporate environmental collision constraints into the free
space because self-collision is already being checked.

As a practical example, consider the Amazon Picking Chal-
lenge (APC) [3]. The APC is a recurring robotic warehouse
manipulation competition in which a robot is to retrieve objects
from a shelving unit and place them into an order box. The
shelving unit contains several small bins, which have openings
on a vertical face of the unit. Moreover, they are relatively
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Fig. 12. Optimized results for one limb of the Robosimian. Top: rotation is
unconstrained. Bottom: end effector rotation is constrained to point downward.

deep, requiring the robot’s gripper to move in continuous
“forward and backward” paths from the robot’s point of view.
The Baxter robot platform was a popular choice for this
competition (4 teams in 2015 and 6 in 2016, including the
author’s teams). Anecdotally, we found that it was difficult to
place Baxter at a position and height so that it could reach
deeply into all bins in the shelf, and our motion planner often
struggled to find feasible paths. Ultimately, we placed the robot
using trial-and-error.

We retrospectively applied our algorithm to study this prob-
lem more rigorously, comparing the redundancy resolution for
the gripper in downward-facing and forward-facing orienta-
tions. Fig. 13 illustrates the results, demonstrating that the
forward-facing orientation creates many more discontinuities
directly in the area in front of the robot where the shelf is
naturally located. Hence, we conclude that Baxter’s kinematics
are not well-suited for forearm-parallel grippers to reach into
deep horizontal bins. Rather, the downward orientation is
advantageous for maximum horizontal flexibility of move-
ment. The maximum reachable height at this orientation also
suggests that the robot should be elevated 30-50cm higher
than the standard pedestal, and the gripper should be extended
perpendicularly from the forearm to avoid collisions with bin
boundaries.

For the team’s entry to the 2017 APC (rebranded as the
Amazon Robotics Challenge), we conducted a prospective
analysis. The 2017 competition rules require teams to design
their own shelving system, which gives significantly greater
flexibility in designing the workspace. We also decided to

change robots to the Staubli TX90L 6DOF industrial ma-
nipulator with a thin, long end effector. We considered the
questions of 1) should the shelving system be oriented with
horizontal or vertical bin openings, and 2) where should it
be placed to guarantee reachability? Fig. 14 displays the
results from applying our method. For shelves with horizontal
openings, the area directly in front of the robot is fraught with
discontinuities. Shifting the robot to the side greatly improves
reachability, and elevating the robot improves it even further.
A downward-pointing gripper can easily reach all around the
robot in a torus, with maximum reach and gripper-base self-
collision the only constraints on movement.

VII. PERFORMANCE AND SCALABILITY IMPROVEMENTS

The algorithm presented above is practical for relatively
low dimensional spaces where the number of workspace
nodes |Vy| is in the thousands and the number of config-
uration samples per node N, is at most one hundred. For
the larger examples presented above, computation times are
approximately 1 day and memory (RAM) consumption is a
few gigabytes. To scale to higher-dimensional workspaces,
such as the 6D space of positions and orientations, much
larger workspace grids and more configuration samples are
needed. To do so, we developed an implementation that uses
a smarter discretization of configuration space, out-of-core
memory storage, and parallel processing.

A. Self-Motion Manifold Visibility PRM Implementation

A speed and memory bottleneck in our algorithm is the
O(N, (12) all-pairs C-space visibility tests conducted per work-
space edge. Most of these visibility tests are unnecessary since
only one configuration per node will ultimately be picked.
Also, many configurations per workspace node are roughly
equivalent in that they can be connected to the same sets of
neighbors, so adding them to the CSP increases computation
time and memory usage without significant improvements
to solution quality. We apply a technique inspired by the
Visibility PRM algorithm [18], which is a PRM-like planner
that avoids performing edge visibility checks when two nodes
are in the same connected component of the roadmap, since
adding such edges do not improve the roadmap’s connectivity.
This eliminates many unnecessary and costly collision checks.

In this variant, we apply this reasoning to the self-motion
manifolds at workspace points. Observe that, except for
singular points and points on the feasible space boundary,
all configurations in a given self-motion manifold connected
component (SMMCC) at a workspace point x can be smoothly
modified to reach a nearby workspace point z 4+ dx with dx
sufficiently small. As a result, the connectivity of SMMCCs
along the workspace graph is approximately equivalent to the
connectivity of individual configurations. Since there are far
fewer SMMCCs than configurations (usually just a handful),
this can lead to large performance improvements.

The new approach operates as follows:

1) Construct Visibility PRM SMMs at each workspace
point via sampling (Fig. 15.a),
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Fig. 13. From left to right: Baxter shown next to the Amazon Picking Challenge shelving unit; optimized result with gripper facing forward; result with
gripper facing down; candidate alternate design with a sideways gripper extension. The extension allows the gripper to freely enter the shelf horizontally in

the area front of the robot. Wireframe box indicates the desired workspace.

Fig. 14. Testing reachability at different positions and orientations of the Staubli manipulator with a long gripper. Left: if a vertical shelf were placed directly
in front of the robot, singularities prevent freedom of movement. Middle left: shifted to the side, most discontinuities are removed. Middle right: shifting
downward removes most discontinuities. Right: a downward gripper orientation admits free movement in a torus around the robot. Wireframe box indicates

the desired workspace, and boundaries of the reachable set are drawn.

2) Construct C-space edges connecting SMMCCs across
workspace edges, stopping when only a single feasible
edge is found (Fig. 15.b),

3) Solve a CSP only on SMMCCs (Fig. 15.¢), and

4) “Lift” the SMMCC resolution to a C-space resolution.

To test C-space edges efficiently between SMMCCs in Step
2, we test candidate edges in order of increasing C-space
distance. We also only test at most the ¢ shortest candidate
edges plus an additional c longer edges, chosen at random.

For Step 3, the CSP is constructed with one variable per
workspace node as usual, but whose domain is the index of
the SMMCC in the SMM. This drastically reduces the set of
possible values in the CSP. A constraint is imposed along each
workspace edge dictating that there must exist a feasible edge
between selected components.

The SMMCC redundancy resolution needs to be remapped,
since each incoming edge to the SMMCC does not necessarily
match the configuration of an outgoing edge. If used directly,
the resolved SMMCC roadmap may require the robot to re-
configure in-place to move about in the workspace (Fig. 15.c).
Instead Step 4 tries to find one configuration in each resolved
SMMCC that is connected to each neighboring SMMCC via
a C-space edge. This is usually (but not always) possible. Our
process for doing so is as follows.

First, we sequentially and greedily attempt to determine

Fig. 15. Tllustrating the visibility-based redundancy resolution. (a) Self-motion
manifold connected components (SMMCCs) are built at each workspace node
Y1, Y2, y3 using Visibility-PRM. (b) Edges connecting SMMCCs are checked.
(c) A CSP solves for a resolution among SMMCCs. (d) A C-space resolution
is determined via lifting. At y2, the Find-Hub procedure tries to find “hub”
configurations that connect to all adjacent “anchors” (squares). g1 is found to
be a hub, but gz fails the check to the anchor at y;.

“hub” configurations for each SMMCC. Let y be the work-
space node and S be the SMCC under consideration. A
configuration ¢ € S is a hub if it has a connection in C-space
to the resolved SMMCC S’ of every adjacent workspace node
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y'. Moreover, we require that if ¢y was previously resolved
with hub ¢, then ¢ and ¢’ are connected.

The Find-Hub procedure operates as follows. First, the set of
configurations at neighboring SMMCCs S’ that are endpoints
of existing feasible C-space paths are called “anchors” and
their starting points are considered “candidates.” First, all can-
didates are checked for being hubs to all anchors (Fig. 15.d). If
this fails, configurations between candidates on the SMMCC
subgraph are checked for being hubs to all anchors. Finally,
if this fails, the candidate covering the maximum number of
anchors is determined and all edges to configurations ¢’ € S’
are checked (as long as y’ does not have a determined hub).

Find-Hub is performed for all workspace nodes, and if any
fail, we perform a fallback lifting phase. We then perform
all-pairs redundancy resolution locally around the workspace
nodes Vp for which Find-Hub fails. Let V; be the 1-ring of
VE (the set of nodes 1 step away from Vy) and let Vs be
its 2-ring. All-pairs edge checks are conducted between all
nodes in the resolved SMMCCs of VU Vy, and edge checks
are conducted between the hubs of V5, and all configurations
in the SMMCCs of V5. A C-space CSP is then solved over
the resulting C-space roadmap with the variables being the
configurations assigned to nodes Vg U V.

B. Parallel and Out-of-Core Memory Implementation

We store a key-value database containing information asso-
ciated to workspace nodes and edges. Node data consists of the
workspace parameter, a list of configurations, and the topology
of the self-motion manifold at that node. Edge data consists
of a list of the feasible edges of the C-space graph, which are
represented by the indices of the configurations at adjoining
workspace nodes. Each entry contains tens or hundreds of kb
of data depending on N,. As many entries of the database as
possible are stored in resident memory up to a given cache
size C. When C' is exceeded, entries are dumped from RAM
to disk in least-recently used (LRU) fashion.

Parallel processing is performed by a master process that
assigns jobs to worker threads, retrieves the results, and inserts
results into the cached database. First, the master assigns
workers to sample SMMs at workspace nodes. Next, the
workers are assigned to perform connectivity checks along
each workspace edge. This step requires the master to read
back the entire graph from disk. However, the performance
drop is negligible because the process is computation bound
by a large margin.

Finally, to create the CSP, the entire graph must be read
again from disk, and each SMM connected component is
assigned as a value for each workspace node. The number
of components and edges per node is typically small, so the
CSP can be solved in main memory.

The resulting resolution stores at most one configuration
per workspace node, so it can be easily kept in memory (165
mb in our largest examples). The optimization postprocessing
steps are also performed in main memory.

C. Experiments

Tests on our enhanced visibility-based algorithm are con-
ducted on a 64-core shared memory server machine with
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Fig. 16. Speed improvement of the main phases of the visibility-based

algorithm relative to the basic algorithm as a function of the C-space sample
count Ny, including the work done at single workspace nodes (Intra), at
workspace edges (Inter), and solving the CSP (CSP). As N, increases the
total speedup approaches two orders of magnitude.
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Fig. 17. Normalized running time as a function of the number of threads in
our parallel implementation, showing linear speedups.

128 GB RAM. Fig. 16 illustrates the speed improvements
of the enhanced technique compared to the basic resolution.
These tests were conducted on the ATLAS robot example.
Total time is broken up into Intra, Inter, and CSP components.
Referring to the steps in the algorithm outlined in Sec. VII-A,
these components indicate the work done at a single workspace
nodes (Step 1), workspace edges (Step 2), and to resolve
the CSP (Steps 3+44), respectively. Compared to the basic
algorithm, Intra and CSP computations are more expensive
due to the additional work done in the visibility graph con-
struction and lifting steps. However, the Inter computations
are massively sped up, leading to a net improvement of one
or two orders of magnitude.

Fig. 17 displays the time taken by the parallel implementa-
tion relative to the single-threaded implementation. Speedups
are nearly linear. Other experiments found that the cache size
C had very little effect on performance, which demonstrates
that the algorithm is CPU-bound.

Ultimately, the improved implementation can generate large
resolutions, consisting of hundreds of thousands of workspace
nodes and billions of configurations and visibility tests, in
hours on the server. Fig. 18 demonstrates an example with the
Baxter robot on a 6D position and orientation workspace with
451,440 workspace nodes. The space SO(3) was discretized
using a grid on the quaternion sphere. With NV, = 200, com-
putation on our server took 4 days. The figure illustrates two
slices of the resolution at different end-effector orientations.
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Fig. 18. The redundancy resolution for a 6D Cartesian position and orientation
workspace with 451,440 nodes. 3D slices through the position dimensions are
shown for two end-effector orientations.

VIII. CONCLUSION

This paper presented a method for global redundancy res-
olution for Cartesian workspace movements of robot manipu-
lators. The method computes an approximate, maximally con-
tinuous pseudoinverse of the multivariate forward kinematic
map using a roadmap-based approach, which is solved as a
constraint satisfaction problem (CSP). Software for the algo-
rithms presented in this paper and more examples are available
at http://motion.pratt.duke.edu/redundancyresolution/.

Future work should investigate how the resulting maps may
be used for robot mechanism design, teleoperation, or reduced
dimensionality motion planning. We are also interested in
studying the extension of global resolution to higher dimen-
sional workspaces, and applying it to problems like mobile
manipulation.
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